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Introduction

Fin (also known as extended surfaces) could be
defined as protrusions or appendages
deliberately added to the surface of an object to
enhance its heat transfer characteristics.

Fins are employed to increase the surface area
available for heat exchange, thereby improving
the efficiency of cooling or heating processes.

The relevance of fins is evident in our daily lives,
influencing cooling processes in refrigerators,
the radiator systems in cars, the heating
elements in geysers, the thermal fins used in
heat dissipation in our computers and
numerous other applications around us.

Rhodes University, Makhanda, South Africa Thermal analysis of extended surfaces using deep neural networks July 4, 2024



Application of extended surfaces
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Model Formulation

The following dynamical cumulative heat equation describes the equilibrium of thermal transport
(Kasali et al. 2022, Sobamowo et al. 2018):

z(x) = z(x+ δx) + zconv + zrad + zmag + zint + porous term. (1)

Equation (1) represents the thermal energy balance within a closed system.
The following assumptions are made in deriving the governing equation:

l The porous media is homogeneous and saturates with a single-phase fluid.
l The longitudinal fin is constrained in length with an insulated tip, creating an adiabatic system
where no heat is transmitted from the tip.

l The interaction between the porous medium and the single-phase fluid is formulated using the
Darcy model.

l The effect of the electrical field due to polarization is considered to be negligible, i.e. E = 0.

l Temperature at the base of the fin is F = Fw and at the tip takes the form,
dF
dx

= 0.
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Figure: Geometrical configuration of the fin
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z(x)− z(x+ δx) = η(F)(F− F∞) δa︸ ︷︷ ︸
heat due to convection

+ ϵσ∗(F4 − F4∞) δa︸ ︷︷ ︸
heat due to radiation

+
Je × Je

σ
aδx︸ ︷︷ ︸

heat due to magnetic element

+ zint(F) aδx︸ ︷︷ ︸
internal heat dissipation

+ ρcpwu(x)(F− F∞) δx.︸ ︷︷ ︸
heat due to porous effect


(2)

Here, u(x) represents the movement of the buoyancy-driven flow at any location x, and Je is the
intensity of the conduction responsible for the thermal transport due to electric current, given,
respectively, as (Madhura et al. 2020)

u(x) =
gβK
ν

(F− F∞), and Je = σ(E+ V× B). (3)

Thus,

z(x)−
(
z(x) +

dz
dx

δx
)

= η(F)(F− F∞)Pδx+ ϵσ∗(F4 − F4∞)Pδx

+
Je × Je

σ
aδx+ zint(F)aδx+

ρcpgβK
ν

w(F− F∞)2δx,

 (4)

where δa = Pδx.
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Upon division by δx, and some mathematical adjustment,

− dz
dx

= η(F)P(F− F∞) + ϵσ∗P(F4 − F4∞) + aσB2
0u(x)2 + azint(F) +

ρcpgβK
ν

w(F− F∞)2, (5)

where
Je × Je

σ
= σB2

0u(x)2. Following Fourier’s law of heat conduction (Liu 1990), heat conduction
taking place within the fin can be mathematically described as,

z = −ak(F)dF
dx

. (6)

d
dx

(
ak(F)

dF
dx

)
= η(F)P(F− F∞) + ϵσ∗P(F4 − F4∞)

+ aσ
B2
0g2β2K2

ν2
(F− F∞)2 + azint(F) +

ρcpgβK
ν

w(F− F∞)2,

 (7)
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and using the following relations

k(F) = ka[1 + α0(F− F∞) + α2
1(F− F∞)2], η(F) = ηb

(
F− F∞
Fw − F∞

)n

,

and zint(F) = ι[1 + ξ(F− F∞)].

 (8)

After some simplifications, Equation (7) becomes

d
dx

[
ka[1 + α0(F− F∞) + α2

1(F− F∞)2]
dF
dx

]
− ηbP(F− F∞)n+1

a(Fw − F∞)n
− ϵσ∗P

a
(F4 − F4∞)

− ι[1 + ξ(F− F∞)]− σB2
0g2β2K2

ν2
(F− F∞)2 − ρcpgβKw

a
(F− F∞)2 = 0,

 (9)

with associated boundary conditions given as

at x = 0, F = Fw,

at x = L,
dF
dx

= 0.

 (10)
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We now introduce the following dimensionless variables and parameters:

ζ =
x
L
, Γ =

F− F∞
Fw − F∞

, M =
ηbPL2

aka
, Q =

ιL2

ka(Fw − F∞)
, ϕ0 = α0(Fw − F∞),

ϕ1 = α2
1(Fw − F∞)2, NP =

ρcpgβKwL2(Fw − F∞)

aνka
, NR =

L2σ∗P(Fw − F∞)3

aka
,

NF =
F∞

Fw − F∞
, ξ∗ = ξ(Fw − F∞), H =

σB2
0g2β2K2L2(Fw − F∞)

ν2ka
.


(11)

We obtained the following single variable differential equation:

d
dζ

[
K1(Γ)

dΓ
dζ

]
−MΓn+1 − ϵNR

[
(NF + Γ)4 − N4

F
]
− (H+ NP)Γ

2 − Q (1 + ξ∗Γ) = 0, (12)

where K1(Γ) = 1 + ϕ0Γ + ϕ1Γ
2 and its associated insulated boundary conditions

at ζ = 0, Γ = 1, and at ζ = 1,
dΓ
dζ

= 0. (13)
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The fin efficiency is computed by dividing the rate of heat transfer (Zfin) by the ideal rate of heat
transfer (Zideal), where the latter represents the thermal energy that would be conducted if the entire
fin temperature were the same as the temperature of the fin base. This relationship is expressed as
(Madhura et al. 2020):

Zr =
Zfin
Zideal

=

∫ L
0
P(F− F∞)dx

PL(Fw − F∞)
=

∫ 1

0

Γ(ζ)dζ, (14)

where Zfin =
∫ L
0
P(F− F∞)dx is the rate of heat transfer.
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Numerical Method
This study uses a deep and fully connected feedforward artificial neural networks framework to solve the
nonlinear differential equation (12) with the associated boundary conditions (13). Suppose the differential
equation (12) is defined as

G
[
ζ,Γ(ζ),

dΓ(ζ)
dζ

,
d2Γ(ζ)

dζ2

]
= 0, ζ ∈ [0, 1], (15)

subject to the conditions in (13), where G is a nonlinear operator of Γ(ζ) and its derivatives.

l The set of Chebyshev-Gauss-Lobatto points,

ζ̃j = − cos
(

πj
Mζ

)
, j = 0, . . . ,Mζ ,

mapped onto ζ ∈ [0, 1].
l The nonlinear differential equation (15) is then transformed into its discrete equivalent

G
[
ζj,Γ(ζj),

dΓ(ζj)
dζ

,
d2Γ(ζj)

dζ2

]
= 0, ζj ∈

1

2
(ζ̃ + 1) ≡ [0, 1], (16)

subject to the conditions
Rhodes University, Makhanda, South Africa Thermal analysis of extended surfaces using deep neural networks July 4, 2024



Γ(ζ0) = 1 and
dΓ(ζMζ

)

dζ
= 0. (17)

Consider the ansatz, Γt(ζ;w,b), which satisfies the boundary conditions (17) for the solution of the
differential equation (16). Here, w and b are the weights and biases of the deep neural networks
framework. Therefore, the problem of approximating the solution of the differential equation then
becomes the unconstrained minimization problem,

min
w,b

∑
ζj∈[0,1]

(
G
[
ζj,Γt(ζj;w,b),

dΓt(ζj;w,b)
dζ

,
d2Γt(ζj;w,b)

dζ2

])2

. (18)

In the proposed technique, the trial solution, Γt(ζ;w,b), is defined as

Γt(ζ;w,b) = 1 + ζ

(
N(ζ;w,b)− N(1;w,b)− dN(1;w,b)

dζ

)
. (19)

The trial solution, Γt(ζ;w,b), depends on the output, N(ζ;w,b), of the neural networks framework
and is chosen to satisfy the boundary conditions, (13), of the differential model.
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N(ζ;w,b) is the single output of a feedforward deep neural network architecture fed with a single
input vector, ζj.

ζ

input

hidden layers

wl
ik

qL

output

bl−1 bl bL

Figure: Schematic diagram of a fully connected deep neural network.

l The sigmoid activation function, ϱ(q) = (1 + e−q)−1, is used.
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l The neural network framework is expressed mathematically as follows:

q0 = ζ, the input layer

ql = ϱl(wlql−1 + bl), 1 < l < L− 1, the hidden layers
qL = wLqL−1 + bL, the output layer,

 (20)

where the result of the output layer, qL = N(ζ;w,b), is used in the trial solution (19).
l To find the weights and biases in the layers, we minimize the residual function

R(w,b) =
Mζ∑
j=0

(
G
[
ζj,Γt(ζj;w,b),

dΓt(ζj;w,b)
dζ

,
d2Γt(ζj;w,b)

dζ2

])2

, (21)

using gradient descent optimization with adaptive moment estimation.

We used the GradientTape sub-module of Python’s TensorFlow package. The weights and biases are
then updated through backward propagation. The neural network is completely implemented with
Python programming language using the TensorFlow and NumPy packages.

Rhodes University, Makhanda, South Africa Thermal analysis of extended surfaces using deep neural networks July 4, 2024



During the training process, the network adjusts its parameters, viz weights and biases, to minimize
the loss and improve the predictability of the trial solution.
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Figure: Training loss curve of the neural networks algorithm with six hidden layers and 50 neurons in each
hidden layer.
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Table: Step-by-step algorithm for solving Equation (12) using a fully connected deep neural network.

1. Define the variable q0 = ζ as input.
2. Define the number of hidden layers and number of neurons in each layer.
3. Initialize the weights and biases for each layer and set them as trainable parameters.
4. Define the neural networks architecture:
5. for l = 1 to L
6. ql = ϱl(wlql−1 + bl) end for
7. Define the trial solution: Γt(ζ;w,b) = 1 + ζ (N(ζ;w,b)− N(1;w,b)− N′(1;w,b)).
8. Define the loss functionR(w,b) in (21) in terms of the trial function.
9. Define the model parameters, ϕ0, ϕ1,M, n, ϵ,NR,NF,H,NP,Q, ξ∗ as untrainable parameters.
10. Train the neural network model to optimize the weights and biases by minimizing the residual

function.
Remark
The spectral local linearization method for Equation (12), given the conditions specified in Equation
(13), is implemented for validation purposes.
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Results and Discussion

The goal of this study is in two folds:

l to develop a deep neural network for
simulating the fin dynamical model

l to investigate the impacts of each
dimensionless parameter, since the model is
novel.

Hence, If not specified otherwise, the analysis of
the results was carried out using the following
parameter values: M = 1.0, NR = 0.10, NF =
0.10, n = 1.0, ϵ = 1.0, ϕ0 = 0.10, ϕ1 =
0.30,NP = 1.0, H = 1.0, Q = 0.2, and ξ∗ = 1.0.

Validation of themethod
Table: The fin efficiency rate as computed using the
deep neural network approach and the spectral local
linearization method with the following values:
NR = 0.10, n = 1.0, NF = 0.10, Q = ϕ0 = ϕ1 = 0.0,
ξ∗ = 0.6 and ϵ = 1.0.

M H NP DNN SLLM

1.0 0.5 2.0 0.62475 0.62495
2.0 – - 0.586020.58633
1.0 0.1 2.0 0.64334 0.64352
– 0.3 – 0.63385 0.63397
1.0 0.5 1.0 0.67598 0.67612
– – 1.5 0.64839 0.64852
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Figure: The impacts of linear (ϕ0), and nonlinear (ϕ1), thermal conductivity on temperature of the fin.

The linear relationship suggests that the thermal conductivity of the fin changes uniformly with temperature.
On the other hand, the nonlinear thermal conductivity variation has a much more complex, non-uniform or even

non-monotonic relationship with the temperature.
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Figure: The impacts of multi-boiling (n) and magnetic parameter (H) on the temperature of the fin.

n = − 1
4
indicates laminar film boiling, natural convection corresponds to n = 1

4
, and n = 2 represents nucleate

boiling. Increasing the magnetic field parameter has a notable effect on the temperature distribution at the tip
of the fin. As the parametric value of the magnetic field parameter increases, the temperature at the tip

decreases.
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Figure: The impacts of radiation (NR) and internal heat generation (Q) on the temperature of the fin.

Increasing the thermal radiation parameter reduces the temperature observed on the extended surface. This
phenomenon arises because enhanced thermal radiation facilitates heat transfer away from the surface. A

significant decrease in the temperature of the fin at its tip is experienced as the fin generatesmore internal heat.
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Conclusion
Novelty
The primary objective of this
study is to develop a deep
learning algorithm for
approximating the solution of a
differential equation that
describes the intricate dynamics
of heat transfer on extended
surfaces.

The study also seeks to elucidate
the physical implications of some
physical parameters arising from
the differential model.

Methodology
A deep neural network
architecture was designed to
approximate the solution of the
differential model. The loss
function was used to assessed
our stopping criterion and to
check convergence of the
method.

A spectral-based numerical
method was used to benchmark
the result of the neural network
technique.

Findings
It was observed that variations in
the thermal radiation parameter
exert a comparable influence on
reducing the fin temperature at
the tip when compared to
changes in the internal heat
generation parameters.

Using materials with varying
thermal conductivity can
enhance the efficiency of an
extended surface, thus
optimizing the heat transfer
process.
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Thank you.
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